Using Hidden Nodes in Bayesian Networks

نویسندگان

  • Chee-Keong Kwoh
  • Duncan Fyfe Gillies
چکیده

In the construction of a Bayesian network, it is always assumed that the variables starting from the same parent are conditionally independent. In practice, this assumption may not hold, and will give rise to incorrect inferences. In cases where some dependency is found between variables, we propose that the creation of a hidden node, which in effect models the dependency, can solve the problem. In order to determine the conditional probability matrices for the hidden node, we use a gradient descent method. The objective function to be minimised is the squared-error between the measured and computed values of the instantiated nodes. Both forward and backward propagation are used to compute the node probabilities. The error gradients can be treated as updating messages and can be propagated in any direction throughout any singly connected network. We used the simplest node-by-node creation approach for parents with more than two children. We tested our approach on two different networks in an endoscope guidance system and, in both cases, demonstrated improved results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Project Portfolio Risk Response Selection Using Bayesian Belief Networks

Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...

متن کامل

Revising Bayesian Network Parameters Using Backpropagation

The problem of learning Bayesian networks with hidden variables is known to be a hard problem. Even the simpler task of learning just the conditional probabilities on a Bayesian network with hidden variables is hard. In this paper, we present an approach that learns the conditional probabilities on a Bayesian network with hidden variables by transforming it into a multi-layer feedforward neural...

متن کامل

{34 () Adaptive Probabilistic Networks with Hidden Variables *

Probabilistic networks (also known as Bayesian belief networks) allow a compact description of complex stochastic relationships among several random variables. They are used widely for uncertain reasoning in artiicial intelligence. In this paper, we investigate the problem of learning probabilistic networks with known structure and hidden variables. This is an important problem, because structu...

متن کامل

Interpretation of Hidden Node Methodology with Network Accuracy

Bayesian networks are constructed under a conditional independency assumption. This assumption however does not necessarily hold in practice and may lead to loss of accuracy. We previously proposed a hidden node methodology whereby Bayesian networks are adapted by the addition of hidden nodes to model the data dependencies more accurately. Empirical results in a computer vision application to c...

متن کامل

Adaptive Probabilistic Networks with

Probabilistic networks (also known as Bayesian belief networks) allow a compact description of complex stochastic relationships among several random variables. They are rapidly becoming the tool of choice for uncertain reasoning in artiicial intelligence. In this paper, we investigate the problem of learning probabilistic networks with known structure and hidden variables. This is an important ...

متن کامل

Quantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression

Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artif. Intell.

دوره 88  شماره 

صفحات  -

تاریخ انتشار 1996